考試科目名稱(chēng):理學(xué)數學(xué)(自命題)
考試科目代碼:601
考試形式:筆試
考試時(shí)間:180分鐘
滿(mǎn)分:150分
參考書(shū)目:同濟大學(xué)數學(xué)系編 《高等數學(xué)》(第八版)、《線(xiàn)性代數》(第七版)
一、試卷結構:
(一)試卷內容比例: 高等數學(xué)約3/4,線(xiàn)性代數約1/4.
(二)試卷題型
1.填空題:共15小題,每題6分,共90分(其中高數72分,線(xiàn)代18分)
2.解析題(包括計算和證明題):6小題,共60分(其中高數40分,線(xiàn)代20分)
二、考試范圍:
高等數學(xué)部分:
一.函數極限連續
函數的概念及表示法,函數的定義域、值域,復合函數與分段函數,初等函數,函數關(guān)系的建立,數列極限與函數極限的定義及其性質(zhì),無(wú)窮小量和無(wú)窮大量的概念及性質(zhì),無(wú)窮小量的比較,極限的四則運算,極限存在的單調有界準則和夾逼準則,兩個(gè)重要極限,函數連續的概念,函數間斷點(diǎn)的類(lèi)型,初等函數的連續性,閉區間上連續函數的性質(zhì)
考試要求
1. 理解函數的概念,掌握函數的表示法,會(huì )建立應用問(wèn)題的函數關(guān)系.
2. 理解復合函數及分段函數的概念了解反函數及隱函數的概念
3. 掌握基本初等函數的性質(zhì)及其圖形,了解初等函數的概念.
4. 理解極限的概念,理解函數左極限與右極限的概念以及函數極限存在與左、右極限之間的關(guān)系.
5. 掌握極限的性質(zhì)及四則運算法則
6. 掌握極限存在的兩個(gè)準則,并會(huì )利用它們求極限,掌握利用兩個(gè)重要極限求極限的方法.
7. 理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的比較方法,會(huì )用等價(jià)無(wú)窮小量求極限.
8. 理解函數連續性的概念(含左連續與右連續),會(huì )判別函數間斷點(diǎn)的類(lèi)型.
9. 了解連續函數的性質(zhì)和初等函數的連續性,理解閉區間上連續函數的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會(huì )應用這些性質(zhì).
二 一元函數微分學(xué)
考試內容:導數和微分的概念,導數的幾何意義,可導性與連續性之間的關(guān)系,導數的四則運算法則和復合函數的求導法則,基本初等函數的導數公式,高階導數,隱函數和由參數方程所確定的函數以及反函數的導數,中值定理,洛必達法則,泰勒定理,函數的單調性和函數圖形的凹凸性,極值,最大值和最小值,函數圖形的拐點(diǎn)、曲率
考試要求
1. 理解導數和微分的概念,理解導數和微分的關(guān)系,理解導數的幾何意義,會(huì )求平面曲線(xiàn)的切線(xiàn)方程和法線(xiàn)方程,理解函數的可導性與連續性之間的關(guān)系.
2. 掌握導數的四則運算法則和復合函數的求導法則,掌握基本初等函數的導數公式.了解微分的四則運算法則和一階微分形式的不變性,會(huì )求函數的微分.
3. 了解高階導數的概念,會(huì )求簡(jiǎn)單函數的高階導數.
4. 會(huì )求分段函數的導數,會(huì )求隱函數和由參數方程所確定的函數以及反函數的導數.
5. 理解并會(huì )用中值定理和泰勒定理.
6. 掌握用洛必達法則求未定式極限的方法.
7. 理解函數的極值概念,掌握用導數判斷函數的單調性和求函數極值的方法,掌握函數最大值和最小值的求法及其應用.
8. 會(huì )用導數判斷函數圖形的凹凸性,會(huì )求函數圖形的拐點(diǎn)以及漸近線(xiàn),會(huì )描繪函數的圖形.
9. 了解曲率、曲率圓和曲率半徑的概念,會(huì )計算曲率和曲率半徑.
三 一元函數積分學(xué)
考試內容:不定積分的概念、性質(zhì),積分基本公式,定積分的概念和基本性質(zhì),定積分中值定理,積分上限函數及其導數,牛頓-萊布尼茨公式,不定積分和定積分的換元積分法與分部積分法,有理函數、三角函數的有理式和簡(jiǎn)單無(wú)理函數的積分,反常(廣義)積分,定積分的應用
考試要求
1. 理解原函數的概念,理解不定積分和定積分的概念.
2. 掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法.
3. 會(huì )求有理函數、三角函數有理式和簡(jiǎn)單無(wú)理函數的積分.
4. 理解積分上限的函數,會(huì )求它的導數,掌握牛頓一萊布尼茨公式.
5. 了解反常積分的概念,會(huì )計算反常積分.
6. 掌握用定積分表達和計算一些幾何量與物理量(平面圖形的面積、平面曲線(xiàn)的弧長(cháng)、旋轉體的體積及側面積、平行截面面積為已知的立體體積、功、壓力、質(zhì)心、形心等)及函數的平均值.
四 多元函數微分學(xué)和二重積分
考試內容:二元函數的極限與連續的概念,有界閉區域上二元連續函數的性質(zhì),多元函數偏導數與全微分的概念,多元復合函數一階、二階偏導數,隱函數存在定理,多元函數極值和條件極值,多元函數極值存在的必要條件,拉格朗日乘數法,二重積分的計算方法
考試要求
1. 了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質(zhì).
2. 了解多元函數偏導數與全微分的概念,會(huì )求多元復合函數一階、二階偏導數,會(huì )求全微分,了解隱函數存在定理,會(huì )求多元隱函數的偏導數.
3. 了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會(huì )求二元函數的極值,會(huì )用拉格朗日乘數法求條件極值,會(huì )求簡(jiǎn)單多元函數的最大值和最小值,并求解一些簡(jiǎn)單的應用問(wèn)題.
4. 掌握二重積分的計算方法(直角坐標、極坐標).
五 常微分方程
考試內容:常微分方程的基本概念,變量可分離的微分方程,齊次微分方程,一階線(xiàn)性微分方程,可降階的高階微分方程,線(xiàn)性微分方程解的結構定理,二階常系數齊次線(xiàn)性微分方程,簡(jiǎn)單的二階常系數非齊次線(xiàn)性微分方程,微分方程的簡(jiǎn)單應用
考試要求
1. 了解微分方程及其階、解、通解、初始條件和特解等概念.
2. 掌握變量可分離的微分方程及一階線(xiàn)性微分方程的解法,會(huì )解齊次微分方程
3. 會(huì )用降階法解簡(jiǎn)單的可降階微分方程 .
4. 理解二階線(xiàn)性微分方程解的性質(zhì)及解的結構定理.
5. 掌握二階常系數齊次線(xiàn)性微分方程的解法.
6. 會(huì )解自由項為多項式、指數函數、正弦函數、余弦函數以及它們的和與積的二階常系數非齊次線(xiàn)性微分方程.
7. 會(huì )用微分方程解決一些簡(jiǎn)單的應用問(wèn)題.
線(xiàn)性代數部分
一 行列式
考試內容:行列式的概念和基本性質(zhì) 行列式按行(列)展開(kāi)定理
考試要求
1. 了解行列式的概念,掌握行列式的性質(zhì).
2. 會(huì )應用行列式的性質(zhì)和行列式按行(列)展開(kāi)定理計算行列式.
二 矩陣
考試內容:矩陣的概念,矩陣的線(xiàn)性運算,矩陣的乘法方陣的冪,方陣乘積的行列式,矩陣的轉置,逆矩陣的概念和性質(zhì),矩陣可逆的充分必要條件,伴隨矩陣,矩陣的初等變換,初等矩陣,矩陣的秩,矩陣的等價(jià),分塊矩陣及其運算
考試要求
1. 理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱(chēng)矩陣、反對稱(chēng)矩陣和正交矩陣以及它們的性質(zhì).
2. 掌握矩陣的線(xiàn)性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質(zhì).
3. 理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會(huì )用伴隨矩陣求逆矩陣.
4. 了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價(jià)的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.
5. 了解分塊矩陣及其運算.
三 向量
考試內容:向量的概念 向量的線(xiàn)性組合和線(xiàn)性表示向量組的線(xiàn)性相關(guān)與線(xiàn)性無(wú)關(guān)向量組的極大線(xiàn)性無(wú)關(guān)組等價(jià)向量組向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內積線(xiàn)性無(wú)關(guān)向量組的正交規范化方法
考試要求
1. 理解n維向量、向量的線(xiàn)性組合與線(xiàn)性表示的概念.
2. 理解向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)的概念,掌握向量組線(xiàn)性相關(guān)、線(xiàn)性無(wú)關(guān)的有關(guān)性質(zhì)及判別法.
3. 了解向量組的極大線(xiàn)性無(wú)關(guān)組和向量組的秩的概念,會(huì )求向量組的極大線(xiàn)性無(wú)關(guān)組及秩.
4. 了解向量組等價(jià)的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系
5. 了解內積的概念,掌握線(xiàn)性無(wú)關(guān)向量組正交規范化的施密特正交化方法.
四 線(xiàn)性方程組
考試內容:線(xiàn)性方程組的克萊姆法則,齊次線(xiàn)性方程組有非零解的充分必要條件,非齊次線(xiàn)性方程組有解的充分必要條件,線(xiàn)性方程組解的性質(zhì)和解的結構,齊次線(xiàn)性方程組的基礎解系和通解,非齊次線(xiàn)性方程組的通解
考試要求
1. 會(huì )用克萊姆法則解有關(guān)線(xiàn)性方程組的問(wèn)題.
2. 理解齊次線(xiàn)性方程組有非零解的充分必要條件及非齊次線(xiàn)性方程組有解的充分必要條件.
3. 理解齊次線(xiàn)性方程組的基礎解系及通解的概念,掌握齊次線(xiàn)性方程組的基礎解系和通解的求法.
4. 理解非齊次線(xiàn)性方程組的解的結構及通解的概念.
5. 會(huì )用初等行變換求解線(xiàn)性方程組.
五 矩陣的特征值和特征向量
考試內容:矩陣的特征值和特征向量的概念、性質(zhì),相似矩陣的概念及性質(zhì),矩陣可相似對角化的充分必要條件,相似對角矩陣,實(shí)對稱(chēng)矩陣的特征值、特征向量及其相似對角矩陣
考試要求
1. 理解矩陣的特征值和特征向量的概念及性質(zhì),會(huì )求矩陣的特征值和特征向量.
2. 理解矩陣相似的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會(huì )將矩陣化為相似對角矩陣.
3. 理解實(shí)對稱(chēng)矩陣的特征值和特征向量的性質(zhì).
六次型
考試內容:二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標準形和規范形用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性
考試要求
1.了解二次型的概念,會(huì )用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.
2. 了解二次型的秩的概念,了解二次型的標準形、規范形等概念,了解慣性定理,會(huì )用正交變換和配方法化二次型為標準形.
3. 理解正定二次型、正定矩陣的概念,掌握正定二次型(矩陣)的判別方法
原標題:南昌航空大學(xué)2025年研究生入學(xué)考試自命題考試大綱
文章來(lái)源:https://yjs.nchu.edu.cn/zsgz/tzgg0__xwdt/tzgg4/zsgg/content_174134