(一)微積分
1、函數、極限、連續
(1)求復合函數的定義域;
(2)求函數表達式;
(3)無(wú)窮小階的比較;
(4)利用等價(jià)無(wú)窮小替換、兩個(gè)重要極限求極限;
(5)求冪指函數的極限;
(6)利用洛必達法則求極限;
(7)分段函數在分段點(diǎn)處的連續性;
(8)判斷間斷點(diǎn)類(lèi)型;
2、導數與微分
(1)利用導數的四則運算法則、復合函數求導法則求導數與微分;
(2)求分段函數在分段點(diǎn)處的導數;
(3)一元函數隱函數求導;
(4)一元函數的單調區間、極值、凹凸性、拐點(diǎn)、漸近線(xiàn);
(5)導數的經(jīng)濟應用;
3、一元函數積分學(xué)
(1)利用換元法與分部積分法計算不定積分;
(2)利用換元法與分部積分法計算定積分;
(3)變限積分求導;
(4)定積分的幾何應用;
4、多元函數微分學(xué)
(1)求二元函數的一階偏導數;
(2)求二元函數的全微分;
(3)二元函數隱函數的求導。
(二)線(xiàn)性代數
1、行列式和矩陣
(1)矩陣的基本運算;
(2)伴隨矩陣的求法;
(3)逆矩陣的求法。
2、向量與方程組
(1)向量組的線(xiàn)性相關(guān)性的判斷;
(2)向量組的線(xiàn)性表示;
(3)求齊次方程組的通解;
(4)求非齊次方程組的通解。
(三)概率論與數理統計
1、隨機變量及常見(jiàn)分布
(1)利用分布函數、分布律以及概率密度函數的充分必要條件求未知參數;
(2)已知分布函數求任一事件的概率;
(3)常見(jiàn)八大分布
2、隨機變量的數字特征
(1)利用定義或公式計算期望、方差;
(2)利用性質(zhì)計算期望、方差;
(3)常見(jiàn)分布的期望與方差;
(4)已知隨機變量的數學(xué)期望、方差求解未知參數;